3 resultados para Multilayer Perceptron

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Den Schwerpunkt dieser Dissertation bildet zum einen die Entwicklung eines theoretischen Modells zur Beschreibung des Strukturbildungsprozesses in organisch/anorganischen Doppelschichtsystemen und zum anderen die Untersuchung der Übertragbarkeit dieser theoretisch gewonnenen Ergebnisse auf reale Systeme. Hierzu dienen systematische experimentelle Untersuchungen dieses Phänomens an einem Testsystem. Der Bereich der selbstorganisierenden Systeme ist von hohem wissenschaftlichen Interesse, erlaubt er doch die Realisierung von Strukturen, die nicht den Begrenzungen heutiger Techniken unterliegen, wie etwa der Beugung bei lithographischen Verfahren. Darüber hinaus liefert ein vertieftes Verständnis des Strukturbildungsprozesses auch eine Möglichkeit, im Falle entsprechender technischer Anwendungen Instabilitäten innerhalb der Schichtsysteme zu verhindern und somit einer Degradation der Bauteile entgegenzuwirken. Im theoretischen Teil der Arbeit konnte ein Modell im Rahmen der klassischen Elastizitätstheorie entwickelt werden, mit dessen Hilfe sich die Entstehung der Strukturen in Doppelschichtsystemen verstehen läßt. Der hier gefundene funktionale Zusammenhang zwischen der Periode der Strukturen und dem Verhältnis der Schichtdicken von organischer und anorganischer Schicht, wird durch die experimentellen Ergebnisse sehr gut bestätigt. Die Ergebnisse zeigen, daß es technologisch möglich ist, über die Vorgabe der Schichtdicke in einem Materialsystem die Periodizität der entstehenden Strukturen vorzugeben. Darüber hinaus liefert das vorgestellte Modell eine Stabilitätsbedingung für die Schichtsysteme, die es ermöglicht, zu jedem Zeitpunkt die dominierende Mode zu identifizieren. Ein Schwerpunkt der experimentellen Untersuchungen dieser Arbeit liegt auf der Strukturbildung innerhalb der Schichtsysteme. Das Testsystem wurde durch Aufbringen einer organischen Schicht - eines sog. Molekularen Glases - auf ein Glassubstrat realisiert, als Deckschicht diente eine Siliziumnitrid-Schicht. Es wurden Proben mit variierenden Schichtdicken kontrolliert erwärmt. Sobald die Temperatur des Schichtsystems in der Größenordnung der Glasübergangstemperatur des jeweiligen organischen Materials lag, fand spontan eine Strukturbildung auf Grund einer Spannungsrelaxation statt. Es ließen sich durch die Wahl einer entsprechenden Heizquelle unterschiedliche Strukturen realisieren. Bei Verwendung eines gepulsten Lasers, also einer kreisförmigen Wärmequelle, ordneten sich die Strukturen konzentrisch an, wohingegen sich ihre Ausrichtung bei Verwendung einer flächenhaften Heizplatte statistisch verteilte. Auffällig bei allen Strukturen war eine starke Modulation der Oberfläche. Ferner konnte in der Arbeit gezeigt werden, daß sich durch eine gezielte Veränderung der Spannungsverteilung innerhalb der Schichtsysteme die Ausrichtung der Strukturen (gezielt) manipulieren ließen. Unabhängig davon erlaubte die Variation der Schichtdicken die Realisierung von Strukturen mit einer Periodizität im Bereich von einigen µm bis hinunter zu etwa 200 nm. Die Kontrolle über die Ausrichtung und die Periodizität ist Grundvoraussetzung für eine zukünftige technologische Nutzung des Effektes zur kontrollierten Herstellung von Mikro- bzw. Nanostrukturen. Darüber hinaus konnte ein zunächst von der Strukturbildung unabhängiges Konzept eines aktiven Sensors für die optische Raster-Nahfeld-Mikroskopie vorgestellt werden, das das oben beschriebene System, bestehend aus einem fluoreszierenden Molekularen Glas und einer Siliziumnitrid-Deckschicht, verwendet. Erste theoretische und experimentelle Ergebnisse zeigen das technologische Potential dieses Sensortyps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lasers play an important role for medical, sensoric and data storage devices. This thesis is focused on design, technology development, fabrication and characterization of hybrid ultraviolet Vertical-Cavity Surface-Emitting Lasers (UV VCSEL) with organic laser-active material and inorganic distributed Bragg reflectors (DBR). Multilayer structures with different layer thicknesses, refractive indices and absorption coefficients of the inorganic materials were studied using theoretical model calculations. During the simulations the structure parameters such as materials and thicknesses have been varied. This procedure was repeated several times during the design optimization process including also the feedback from technology and characterization. Two types of VCSEL devices were investigated. The first is an index coupled structure consisting of bottom and top DBR dielectric mirrors. In the space in between them is the cavity, which includes active region and defines the spectral gain profile. In this configuration the maximum electrical field is concentrated in the cavity and can destroy the chemical structure of the active material. The second type of laser is a so called complex coupled VCSEL. In this structure the active material is placed not only in the cavity but also in parts of the DBR structure. The simulations show that such a distribution of the active material reduces the required pumping power for reaching lasing threshold. High efficiency is achieved by substituting the dielectric material with high refractive index for the periods closer to the cavity. The inorganic materials for the DBR mirrors have been deposited by Plasma- Enhanced Chemical Vapor Deposition (PECVD) and Dual Ion Beam Sputtering (DIBS) machines. Extended optimizations of the technological processes have been performed. All the processes are carried out in a clean room Class 1 and Class 10000. The optical properties and the thicknesses of the layers are measured in-situ by spectroscopic ellipsometry and spectroscopic reflectometry. The surface roughness is analyzed by atomic force microscopy (AFM) and images of the devices are taken with scanning electron microscope (SEM). The silicon dioxide (SiO2) and silicon nitride (Si3N4) layers deposited by the PECVD machine show defects of the material structure and have higher absorption in the ultra violet range compared to ion beam deposition (IBD). This results in low reflectivity of the DBR mirrors and also reduces the optical properties of the VCSEL devices. However PECVD has the advantage that the stress in the layers can be tuned and compensated, in contrast to IBD at the moment. A sputtering machine Ionsys 1000 produced by Roth&Rau company, is used for the deposition of silicon dioxide (SiO2), silicon nitride (Si3N4), aluminum oxide (Al2O3) and zirconium dioxide (ZrO2). The chamber is equipped with main (sputter) and assisted ion sources. The dielectric materials were optimized by introducing additional oxygen and nitrogen into the chamber. DBR mirrors with different material combinations were deposited. The measured optical properties of the fabricated multilayer structures show an excellent agreement with the results of theoretical model calculations. The layers deposited by puttering show high compressive stress. As an active region a novel organic material with spiro-linked molecules is used. Two different materials have been evaporated by utilizing a dye evaporation machine in the clean room of the department Makromolekulare Chemie und Molekulare Materialien (mmCmm). The Spiro-Octopus-1 organic material has a maximum emission at the wavelength λemission = 395 nm and the Spiro-Pphenal has a maximum emission at the wavelength λemission = 418 nm. Both of them have high refractive index and can be combined with low refractive index materials like silicon dioxide (SiO2). The sputtering method shows excellent optical quality of the deposited materials and high reflection of the multilayer structures. The bottom DBR mirrors for all VCSEL devices were deposited by the DIBS machine, whereas the top DBR mirror deposited either by PECVD or by combination of PECVD and DIBS. The fabricated VCSEL structures were optically pumped by nitrogen laser at wavelength λpumping = 337 nm. The emission was measured by spectrometer. A radiation of the VCSEL structure at wavelength 392 nm and 420 nm is observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-resolved diffraction with femtosecond electron pulses has become a promising technique to directly provide insights into photo induced primary dynamics at the atomic level in molecules and solids. Ultrashort pulse duration as well as extensive spatial coherence are desired, however, space charge effects complicate the bunching of multiple electrons in a single pulse.Weexperimentally investigate the interplay between spatial and temporal aspects of resolution limits in ultrafast electron diffraction (UED) on our highly compact transmission electron diffractometer. To that end, the initial source size and charge density of electron bunches are systematically manipulated and the resulting bunch properties at the sample position are fully characterized in terms of lateral coherence, temporal width and diffracted intensity.Weobtain a so far not reported measured overall temporal resolution of 130 fs (full width at half maximum) corresponding to 60 fs (root mean square) and transversal coherence lengths up to 20 nm. Instrumental impacts on the effective signal yield in diffraction and electron pulse brightness are discussed as well. The performance of our compactUEDsetup at selected electron pulse conditions is finally demonstrated in a time-resolved study of lattice heating in multilayer graphene after optical excitation.